Algebra Regents Questions

Extra Credit

- 1 If $f(x) = \frac{3x+4}{2}$, then f(8) is
 - (1) 21

(3) 14

(2) 16

- (4) 4
- **4** Given the relation $R = \{(-4,2), (3,6), (x,8), (-1,4)\}$
 - Which value of *x* would make this relation a function?
 - (1) -4

(3) 3

(2) -1

- (4) 0
- **5** If the point (K,-5) lies on the line whose equation is 3x + y = 7, then the value of K is
 - (1) 8

(3) 22

(2) -4

- $(4) \ 4$
- **6** The expression $\frac{1}{3}x(6x^2 3x + 9)$ is equivalent to

 - $(1) 2x^2 x + 3 (3) 2x^3 x^2 + 3x$
 - $(2) 2x^2 + 3x + 3$
- $(4) 2x^3 + 3x^2 + 3x$
- 8 What is the constant term of the polynomial $4d + 6 + 3d^2$?
 - (1) 6

(3) 3

(2) 2

(4) 4

- 16 When $3x^2 + 7x 6 + 2x^3$ is written in standard form, the leading coefficient is
 - (1) 7

(3) 3

 $(2)\ 2$

- (4) -6
- 17 Which of the equations below have the same solution?

I.
$$10(x-5) = -15$$

II.
$$4 + 2(x - 2) = 9$$

III.
$$\frac{1}{3}x = \frac{3}{2}$$

- (1) I and II, only
- (3) II and III, only
- (2) I and III, only
- (4) I, II, and III
- 19 In the process of solving the equation $10x^2 12x 16x = 6$, George wrote $2(5x^2 14x) = 2(3)$, followed by $5x^2 14x = 3$. Which properties justify George's process?
 - A. addition property of equality
 - B. division property of equality
 - C. commutative property of addition
 - D. distributive property
 - (1) A and C

(3) D and C

(2) A and B

- (4) D and B
- **24** The volume of a trapezoidal prism can be found using the formula $V = \frac{1}{2}a(b+c)h$. Which equation is correctly solved for b?
 - $(1) b = \frac{V}{2ah} + c$
- $(3) b = \frac{2V}{ah} + c$
- $(2) b = \frac{V}{2ah} c$
- $(4) b = \frac{2V}{ah} c$

- 21 A swimmer set a world record in the women's 1500-meter freestyle, finishing the race in 15.42 minutes. If 1 meter is approximately 3.281 feet, which set of calculations could be used to convert her speed to miles per hour?
 - $(1) \ \frac{1500\,\mathrm{meters}}{15.42\,\mathrm{min}} \bullet \frac{60\,\mathrm{min}}{1\,\mathrm{hour}} \bullet \frac{1\,\mathrm{meter}}{3.281\,\mathrm{feet}} \bullet \frac{1\,\mathrm{mile}}{5280\,\mathrm{feet}}$
 - $(2) \ \frac{1500\,\mathrm{meters}}{15.42\,\mathrm{min}} \bullet \frac{60\,\mathrm{min}}{1\,\mathrm{hour}} \bullet \frac{3.281\,\mathrm{feet}}{1\,\mathrm{meter}} \bullet \frac{1\,\mathrm{mile}}{5280\,\mathrm{feet}}$
 - $(3) \ \frac{1500\,\mathrm{meters}}{15.42\,\mathrm{min}} \bullet \frac{3.281\,\mathrm{feet}}{1\,\mathrm{meter}} \bullet \frac{1\,\mathrm{mile}}{5280\,\mathrm{feet}}$
 - $(4) \ \frac{1500\,\mathrm{meters}}{15.42\,\mathrm{min}} \bullet \frac{60\,\mathrm{min}}{1\,\mathrm{hour}} \bullet \frac{1\,\mathrm{mile}}{5280\,\mathrm{feet}}$

22 The diagram below shows the graph of h(t), which models the height, in feet, of a rocket t seconds after it was shot into the air.

The domain of h(t) is

(1)(0,4)

(3)(0,64)

(2)[0,4]

(4) [0,64]